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Time-dependent variational principles and conservation laws in 
wavepacket dynamics 

J Broeckhove, L Lathouwers and P Van Leuven 
Leerstoel voor Theoretische en Wiskundige Natuurkunde, Universiteit Antwerpen (RUCA), 
Groenenborgerlaan 171, B-2020 Antwerpen, Belgium 

Received 14 November 1988 

Abstract. A criterion for the equivalence of time-dependent variational principles in current 
use in chemistry and physics is demonstrated. Conservation laws are considered and it is 
shown that under certain conditions quantal conservation laws also hold for the time 
evolution derived from the variational principle. The formalism is applied to an N- 
dimensional spherical Gaussian wavepacket. A numerical example for the three- 
dimensional spherical Gaussian potential well is worked out to illustrate the dynamics and 
the role of conservation laws. 

1. Introduction 

Time-dependent variational principles generate approximate solutions to the time- 
dependent Schrodinger equation. Provided they lead to practical and accurate time 
propagation schemes they can be very useful in a variety of problems [l]. Indeed, by 
Fourier transforming various types of time correlation functions one obtains the 
corresponding time-independent physical properties (energy spectrum, cross sections, 
etc). In the molecular physics literature, especially in recent applications of wavepacket 
techniques, the time-dependent variational principle attributed to McLachlan has been 
implemented [2-41. In nuclear physics a different development took place based on 
the principle of stationary action or Hamilton principle using a quantum mechanical 
Lagrangian. It has been applied to time-dependent Hartree-Fock and other group 
theoretical nuclear structure models [ 5 , 6 ] .  

Our objective here is twofold. First we will show that when the time evolution of 
a parametrised wavefunction is restricted to the time dependence of a set of real 
‘complementary parameters’ the above-mentioned principles generate the same evol- 
ution equations. This is intended to show that the discussion of conservation laws 
that is to follow is valid in either approach. Secondly we will argue that the stationary 
action formulation has significant formal advantages because of its resemblance to the 
classical Hamilton formalism. One of those advantages is to provide a framework for 
the study of the conservation laws in the classical formalism and their relation to 
quantum conservation laws. We work out a numerical illustration for a three- 
dimensional Gaussian wavepacket moving in a potential well and focus our attention 
on the angular momentum conservation laws. 

0305-4470/89/204395 + 14$02.50 @ 1989 IOP Publishing Ltd 4395 
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2. The equivalence of the time-dependent variational principles 

It has been pointed out [7] that the equivalence of the aforementioned time-dependent 
principles is non-trivial, i.e. it is conditional upon the manifold of wavefunctions to 
which one applies the variational principle. In  [7] the authors show that the equivalence 
holds in the case of a complex, analytic parametrisation of the wavefunction. We 
consider the case of real parameters and show that there is equivalence provided the 
parameters satisfy a condition that we refer to as the ‘complementarity’ of the para- 
meters. 

In order not to complicate the variational equations we will assume in the following 
that all wavefunctions +(x, t ) ,  where x stands for all the system’s degrees of freedom, 
are normalised at all times. With this convention the principle of stationary action, 
or Hamilton’s principle, requires the variation of the action, i.e. the integral of the 
quantum Lagrangian, to be zero [2] 

B,(f,:dt(4(t)/ih a / a t - H l + ( t ) )  ) = O  (1) 

where the Dirac bracket implies integration over x. In the literature one usually refers 
to (1) as the TDVP principle. Carrying out the variation leads to 

Re(&fIih a / a t  - HI+) = 0. (2) 

It is easy to show that arbitrary variations 84 of the normalised states 4(x, t )  yield 
the time-dependent Schrodinger equation provided the correct time dependence of the 
phase is taken into account by the formula 

If +(x, t )  is restricted to a predetermined region of the Hilbert space, the variational 
principle will generate an approximate but variationally optimal time evolution of a 
given state. Here we will consider wavefunctions that depend on time via a set of N 
real parameters only, i.e. 

b(x ,  t ,  = 4(x la l ( t ) ,  * . . 9 a N ( t ) ) =  6(x la( t ) ) .  (4) 

The nature and the physical significance of the parameters a ( t )  = { a 1 (  t ) ,  . . . , a N ( t ) }  
will depend upon the problem at hand. A phase parameter is excluded here because 
the time-dependent phase can be taken into account separately by (3). The action 
integral in ( 1 )  now becomes a functional of the path a ( t )  in the parameter manifold. 
The variational principle requires the action path to be stationary, much like the 
trajectory of a system in classical mechanics. In setting up the equations of motion 
for a ( i ) ,  two quantities enter the theory [5]. The first one is the function 

H ( a )  =(4(a)lHl4(a)) (5) 
while the second one is the tensor (with h set equal to unity) 

In these definitions, as in the following, we suppress the time dependence of the 
parameters. Since ~ , , ( a )  depends solely on + ( a ) ,  while H ( a )  involves the Hamil- 
tonian, one can say that ( 6 )  represents the kinematical and (5) the dynamical aspects 
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of the time evolution of the parameters. In terms of the above concepts the equations 
of motion in the parameter space can be written as 

Provided v m n ( a )  is invertible for all a, these can be re-written as a set of coupled 
first-order ordinary differential equations of the form 

where 6 is the inverse tensor to r]t. Observe that since r] is antisymmetric, so is &. 
The latter tensor now allows for the definition of a generalised Poisson bracket 

of any two functions f and g of a. In terms of this Poisson bracket the equations of 
motion take the form 

dffn -={a, H } .  
d t  

Thus the variational principle has led us from a manifold in Hilbert space to a parameter 
phase space in which time evolution is described classically by a generalised Poisson 
bracket. The strong parallelism between the TDVP (10) and classical Hamiltonian 
dynamics allows for the study of a quantum system as if it were a classical problem. 
We will return to this aspect later. 

The variational principle formulated by McLachlan, reconsidered by Heller [3,4] 
for the propagation of Gaussian wave packets, and also by Sawada et a1 [8], who refer 
to it as the minimum error method, states that 

~ o [ I / ( i d / ~ t - H ) 4 1 1 2 1  = O  (11) 
where 0 = a 4 / a t  is the only quantity to be varied. Clearly (11) is satisfied if + ( t )  is a 
solution to Schrodinger's equation. Carrying out the variation with respect to 6 yields 

Im[(Seiie - H4)] = 0 (12) 

from which one also recovers Schrodinger's equation if one considers arbitrary vari- 
ations of 8. As before, the correct phase is given by (3). For parametrised states (4) 
it is clear that 0 is a function of both the am and the da,/dt. Therefore the variation 
of 0 is 

However, the first term can be deleted here. Indeed since 4( t )  is required to be fixed 
in the variation with respect to 8, one has Sa, = 0 for all m. Therefore by deleting the 
first term and since 8 = (a4 /aan) (dan/d t ) ,  the 68 reduces to 

t In order for 17 to be invertible the number of parameters must be even. 
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For arbitrary variations S(da,/dt)  one obtains the evolution equations: 

where T is the counterpart of r] ,  defined by 

A priori the TDVP (7) and McLachlan (15) equations of motion are totally different 
and in general they lead to a different time evolution of the parameters a. However, 
in the literature [8,9] both variational principles have been applied to identical model 
systems, e.g. Gaussian wavepackets moving in a Morse potential, and have yielded 
the same qualitative results (i.e. similar trajectories, energy conservation etc). This 
seems to imply that under certain conditions the two principles are equivalent. Detailed 
investigation in the case of the simplest Gaussian wavepacket, which we can write as 

4 ( a 1  = q, a2 = p )  = exp(-x2/2+ qx+ipx) (17) 

omitting phase and normalisation factors, has shown that the equivalence is due to 
the existence of a ‘complementarity’ between the parameters in the sense that 

We can now generalise this result as follows. McLachlan’s principle (11) and the 
principle of stationary action (1) are equivalent if the manifold of wavefunctions 4 
(save for normalisation and phase factors) can be parametrised by pairs of complemen- 
tary parameters. This means that a transformation exists from ( a j )  j = 1, .  . . , N to a 
Set (Xk, y k )  with k = 1, . . . , N / 2  such that 

It is clear that in order for complementarity to be possible, the number of parameters 
N must be even. Given a parametrisation 4 = 4 ( a l , .  . . , a N ) ,  it is not always trivial 
to find a transformation to an ( X k , y k )  set or even to prove its existence (cf, e.g. the 
Gaussian wavepacket (3 1)). 

With condition (19) it is straightforward to prove that McLachlan’s and the station- 
ary action principles are equivalent, i.e. yield identical equations of motion. Assume 
(6), (7) and ( 1 9 ,  (16) have been derived in a parameter set with complementarity, i.e. 
aj = xj for j = 1, .  . . , N / 2  and a, = y, for j = ( N / 2 ) +  1, .  . . , N. Let am and a, be 
complementary coordinates and substitute in the McLachlan’s equations (15) and (16) 

N 
2 
- m = 1,.  . . , 

- -- a4 

After redefining indices, one arrives at 
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which are precisely the TDVP equations (6), (7) .  Evidently, the same substitution takes 
one back from the TDVP to McLachlan’s equations (15), (16), thus establishing their 
equivalence. 

Many applications in molecular physics deal with Gaussian wavepackets in various 
dimensions. The wavepackets may have position and linear momentum as parameters, 
or additionally the width and an associated momentum, as in (31) below. The condition 
of complementarity is fulfilled for such packets. This can be verified explicitly on (31) 
by removing norm and phase factors and taking {xk)={(N/2w2)q, (N/4w2)} and 
{ y k }  ={(p-(4/w)q),  (-Nu/2w)}. Thus we can choose either the ‘stationary action’ or 
McLachlan’s formulation to obtain equations of motion for the wavepacket parameters. 
In the case of Gaussian wavepackets yet another method exists for deriving the 
equations of motion, namely the ‘method of moments’ [lo]. Again this method can 
be shown to be equivalent to the other two [ 111. 

A formal advantage of the ‘stationary action’ formulation is the Hamilton-like form 
(10) of the equations. We will use this fact in the next section to give a general 
discussion of conservation laws associated with the TDVP dynamics on a manifold M 
of states $ ~ ( a ) .  The results obtained also apply of course to McLachlan dynamics in 
case of equivalence as, for example, for Gaussian wavepackets. 

3. Conservation laws 

In analogy with the definition of the TDVP Hamiltonian, one can associate with any 
quantum observable a function A ( a )  on the parameter phase space 

& a )  =(4(.)IAI4(.)). (23) 

The variation in time of such a function along the trajectory a ( t )  is easily computed 
using the equations of motion (8) 

The TDVP time evolution of A ( a )  is therefore generated by the differential equation 

Thus H ( a )  can be interpreted as the generator of time translations and the structure 
of (25) is exactly as in classical mechanics. From a quantal point of view (25) should 
be considered as an approximation to the generalised Ehrenfest equation 

for the time evolution of the expectation value AQuantum( t )  = ($I( t ) lA/d(  t ) )  of the 
operator A with respect to the exact time evolved state 4 ( t )  =exp(- iHt)4(a) .  If the 
manifold of the 4 ( a )  is not the entire Hilbert space the TDVP and quantal time evolution 
differ, resulting in non-zero deviations between the TDVP and quantal expectation 
values. The magnitude of these deviations can be considered as a measure of the 
quality of the TDVP time evolution. 
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Of special interest in any dynamical theory are conserved quantities or so-called 
constants of the motion. In the TDVP formalism it follows from (26) that conserved 
quantities are characterised by vanishing brackets with H ( a ) .  One can use the constants 
of the motion to simplify the interpretation of the TDVP trajectories. Indeed, as in 
classical mechanics, a trajectory a ( t )  must lie in the submanifold of phase space 
described by the intersection of hypersurfaces corresponding to constant values of the 
conserved quantities. However, when considering TDVP dynamics as approximate 
quantum dynamics, one should pay attention to those TDVP quantities that correspond 
to quantal constants of motion, i.e. to functions A( a )  associated with operators A that 
commute with the Hamiltonian H. It may happen that a quantity is both TDVP and 
quantum conserved. A trivial example is the energy since H ( a )  has vanishing bracket 
with itself and H has vanishing commutator with itself. In general, however, one can 
not guarantee that ATDVP is a TDVP constant of the motion if the corresponding A 
commutes with H. It follows from (25) and (26) that at least a sufficient condition of 
simultaneous conservation of ATDVP and AQuantum can be given. Indeed if 

{ A ( a ) ,  H(a)}=(+(a)l  -i[A, H l l 4 ( a ) )  (27) 

[A, HI  = 0 (28) 

the right-hand side of (25) vanishes along any trajectory. Clearly for (27) to hold there 
must exist a compatibility between the choice of A and the structure of the manifold 
of states 4 ( a ) .  Kramer and Saracen0 [5] have studied the case in which 4 ( a )  is 
constructed out of a reference state 4 ( x ( O )  through the action of Lie group operators 
as follows: 

where the A, are the generators of the Lie group (cf also the appendix). One can 
then prove (under conditions specified in [5]) that for the phase space functions A , ( a )  
corresponding to the generators A,, (27) is satisfied. Hence one can conclude that if 
H commutes with a generator of the Lie group in (29), that operator defines a 
conservation law for both the TDVP and the exact quantal motion. 

4. An illustration 

We develop the formalism of the previous sections for the Hamiltonian 

1 
2m 

H=--Ah,+  V ( r )  

and the Gaussian wavepacket (GWP) 

( N  - 2iuw) 4w’ )(r-q)’+(ip.  r ) .  (31) 

Here r is an N-dimensional vector, m a mass parameter and V(r) an arbitrary local 
potential. Observe that the form for H includes the case of a many-body system 
provided the components of r are mass scaled particle coordinates. The GWP wavefunc- 
tion contains 2 N + 2  parameters (in the previous section this number was denoted by 
N )  and it is the spherical extension of the most general GWP in one dimension, which 
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we introduced in [9]t. For the one-dimensional case i: was shown that the TDVP time 
evolution of (31) was formally equivalent to the classical mechanics of a particle of 
mass m in a two-dimensional potential. The TDVP equations then reduced to classical 
Hamiltonian equations in which the position and momentum ( q  and p )  and the width 
and dilational momentum (w and U )  acted as conjugate pairs of variables. To a great 
extent these conclusions carry over to the case of the N-dimensional GWP (31). Indeed 
the Hamilton function is given by 

U ( %  w) =a + (277-”* d r  exp( - f r2)  V( wr + q )  (33) 

which is the Hamiltonian of a particle of mass m moving in an ( N +  1)-dimensional 
potential U ( q ,  w) that contains the Gauss transform of the original potential V( r )  and 
a localisation term inversely proportional to the square of the GWP width w. The spatial 
parameters of the GWP, the position vector q and the width w, have conjugate momenta 
p and U, the square of which determine the kinetic energy part of H. Because of the 
judicious choice of parametrisation, the TDVP bracket reduces to the Poisson form 

(34) 
a A d B  d A d B  

{ A , B } =  , = I  (-----)+(----- as, apJ ap, as, aw a u  a~ a~ 
Combining this result with the expression (32) for the Hamiltonian function yields the 
TDVP equations of motion for the GWP parameters 

These are classical Hamiltonian equations containing the TDVP forces, i.e. the gradients 
of the potential U with respect to qz and w, giving the rate of change of the momenta 
p, and U. 

Along a trajectory q ( t ) ,  p(t), w ( t ) ,  u ( t )  one can check whether a TDVP function 
(23) is conserved or not. Of particular interest are those quantities which are quantum 
mechanically conserved but for which (27) does not hold such that non-zero deviations 
between TDVP and quantum expectation values may arise. We first consider the angular 
momentum operator L = r x (l / i)V. The phase space angular momentum L ( a )  = 
(+(a) /L lc$(a))  of the wavepacket (31) is equal to the classical angular momentum of 
the centre of the wavepacket L(q, p )  = q x p .  If H is rotationally invariant, i.e. if 
V( r )  = V( r ) ,  it commutes with the components Lk and the square L2 of the angular 
momentum operator. It can be shown, by referring to the group theoretic construction 
of the previous section (cf the appendix) or by explicit calculation, that whereas for 
Lk we have 

{ H ,  Lk) = (c$(a)/[H, L k l l 4 ( a ) )  = 0 (36) 

? During the refereeing process of the present paper we published the TDVP formalism for the most general 
G W P  [12]. 
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this is not necessarily so for L2: 

{ H ,  L2) + (4(a)l[H, L2114(.)) = o  (37) 

due to the fact that (4 (a) ILk14(a) ) 'Z  (4(a)L2kl4(a)). 

allow us to illustrate all features of conservation laws in the TDVP framework. 
In view of the properties mentioned above, the angular momentum operators will 

5. Numerical results 

Explicit calculations were performed for a three-dimensional Gaussian well. For a 
rotationally invariant potential V ( r ) ,  the TDVP potential U depends on q instead of 
q, and w only. In our case this gives 

V ( r )  = V, exp[-r2/(2a2)] ( 3 8 )  

From now on we use SI units, hence the explicit occurrence of h, which was taken to 
be unity in all previous formulae. The depth and width of the well are fixed at an 
order of magnitude appropriate for the vibrations of a light diatomic molecule, i.e. 
V, = -1  x lo-'* J, a = 0.7 x lo-'' m, similarly the mass parameter corresponds to the 
reduced mass for such a molecule, m = 1 x kg. With these values the GWP para- 
meters evolve on a time scale of I x 1 0 - l ~  s. 

The propagation of the GWP according to the equations of motion (35) is described 
by the functions q ( t ) ,  p ( t ) ,  w ( t )  and u ( t ) .  As the angular momentum vector L is 
conserved, the position vector q (  t )  moves in a plane perpendicular to L with constant 
sectorial velocity, just as in the case of a classical particle in a central potential. We 
shall take the 4, axis along L and use polar coordinates ql = q cos 0,  q2 = q sin 0.  The 
Hamiltonian (32) can then be written with radial momentum Prad = mq, as 

and hence the motion of the GWP can be reduced to a problem of two degrees of 
freedom q and w, formally equivalent to the motion of a classical particle with mass 
m in a two-dimensional effective potential U,,,(q, w )  = L2/2mq2+ U(q ,  w ) .  

For the case of the Gaussian well ( 3 8 )  we have considered the WP propagation in 
three different energy regions. A low-energy regime ( E  V,), an intermediate region 
close to the point of inflection of V (  E 0). For 
energies near the bottom of the well a near harmonic behaviour is found. This regime 
has been studied in detail both numerically and analytically and needs no further 
comment. The most typical behaviour of the time evolution of the various quantities 
is found in the intermediate range. For higher energies these features remain but 
become less conspicious. We will therefore concentrate our investigations on the 
intermediate-energy range, which is also interesting because of the onset of the break- 
down of the harmonic approximation. 

In figure 1 we show a typical orbit in the ( S I ,  q2)  plane of intermediate energy 
E = 0.63 Vo and initial conditions q1 = 0.5 X lo-", q2 = 0,  w = 1.2 x lo-", p ,  = p z  = 
0.7 x lo-*,, U = 0. Three types of motion are clearly visible in the form of a pulsating 

& V,) and a high-energy region ( E  
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Figure 1. TDVP trajectory (initial conditions given in text) in the (s i ,  q2)  plane with units 
of lo-" m at successive times, 0.2 ps, 0.7 ps, 1.2 ps and 1.6 ps. 

rosette: the trajectory is composed of quasi-ellipses of which the perihelion rotates 
and oscillates between two extreme radial distances. 

I f  the WP were frozen, i.e. w remains constant and U = 0, then, as in the case of a 
classical particle, q ( t )  would vary between two fixed values qmin and qmax. The 
perihelion of the orbit would precess uniformly at a fixed distance from the origin. 
There would thus be two timescales involved: the radial period T~ and the precession 
period T ~ .  Here however, as a consequence of the typically quantal phenomenon of 
the spreading of the WP, which is one of the topics under investigation here, the value 
of w changes in time. In fact, the equations of motion (35) establish a coupling between 
the q and w degrees of freedom. This coupling results in a modulation of the radial 
amplitude. The beat frequency associated with the latter aspect of the GWP evolution 
introduces a third scale T~ in the TDVP dynamics. Also, the precession is not uniform. 
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In figure 2 ( a )  the function q , ( t )  displays the three different timescales: the short 
radial period ~ ~ ( - 0 . l ) ,  the long period T ~ ( - 1 0 )  and the intermediate period T ~ ( - 1 ) .  
From figures 2( b )  and 2( c)  we can see the beats superimposed on the rapid oscillation 
of the radial position q and the width w of the WP. This correlation between q and 
w is brought out in another way by looking at the q-w section of the phase space 
(figure 3): the WP trajectory fills an  area of which the shape reflects the shrinking of 
the WP at  large radial distance and vice versa. It is noteworthy that w remains finite 
at all times, so the Gaussian WP remains localised although we are near the inflection 
point of the potential V, where the harmonic approximation breaks down and  the 
associated WP would spread uncontrollably. 

We now focus on the conserved quantities. The conservation of energy is satisfied 
numerically to a high degree of accuracy (see figure 4). The total energy is composed 
of three parts: the kinetic energy of translation, the kinetic energy of dilation and  the 
potential energy. Each part is a rapidly fluctuating quantity, as can be seen from figure 
4. The constancy of the total energy therefore is a good test for the accuracy of the 
numerical calculations. It should be remarked that kinetic energy is being transferred 
between the two modes of the motion, resulting in beats of period T~ (of the q-w  
motion). 

For the discussion of the angular momentum we distinguish between the case of 
L , ,  which is a conserved quantity both in the quantal and TDVP time propagation, and  
L2, which is not conserved under the TDVP dynamics. In figure 5 we show L, together 
with its dispersion A L 3 = [ L : - ( 4 J L : J 4 ) ] " 2  for the TDVP motion. L, is a constant of 
the motion equal to the conserved quantal expectation value of L 3 .  The dispersion 

4 

2 

q1 0 

-1 

-2 

[ c  I 
0 0.5 1 .o 1.5 

T i m e  

Figure 2. Time evolution of parameter ( a )  q l ,  ( b )  w and (c)  q, all in IO-" m with initial 
conditions as in text, and time in ps. 
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0 2 4 6 
4 

Figure 3. TDVP trajectory (initial conditions given in text) of the (q ,  w )  parameters in units 
of 10-” m. 

I I 

0.3 

0.2 

0.1 

0 

/ 0.2 0.4 0.6 
Time -0.1 Tdll 

-0.4 

-0.5 

-0.6 E 

-0.1 

-0.8 

-0.9 

I I 
Figure 4. Time evolution of the WP energy E, and its constituent terms, i.e. potential energy 
U, translational kinetic energy T,,.,,, and dilational kinetic energy Td,, . Units are lo-’’ Joule 
for energy and ps for time. 
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2t- 3 
1 1 

0 0.5 1 .o 1.5 
Time 

Figure 5. TDVP time evolution (initial conditions given in text) of L, and A L ,  in units h ;  
time is in ps. 

AL, oscillates with the beat period T~ and radial period T~ and an amplitude small 
with respect to the mean value. 

In figure 6 we plot L'. Whereas L&,a,tum is conserved, L & .  fluctuates between 
two extreme values Lgin and Lgax .  As far as the comparison between quantum and 
TDVP is concerned, it should be pointed out that there is an arbitrariness due to the 
choice of initial conditions. Indeed, at each moment of time the WP can be considered 
as an initial wavefunction for which the quantal evolution can be compared with the 
TDVP evolution. Hence by adapting the initial conditions we can keep the phase space 
trajectory, and in particular L2 and L,, the same and have for L&,,,tum any value 
between L$," and Lkax .  Any meaningful comparison between the (classical) TDVP and 
the quantum value for the L2 would therefore require some sort of averaging over the 
TDVP trajectory. 

As a conclusion concerning the conservation laws, we can state that the TDVP 

approximation reproduces the energy and the third component of angular momentum 
correctly and that the conservation of L2 is violated over a period of the order of T~ 

by an amount of at least $(L;,, - L;,"). 

Time 

Figure 6.  Time evolution (initial conditions given in text) of GDYp (oscillatory curve) and 
L&4nium (straight line), both in units h', time is in ps. 
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6. Conclusions 

We have investigated the equivalence of the time-dependent variational principles in 
current use for the approximate time propagation of parametrised wavefunctions or 
wavepackets. Equivalence is found to occur whenever one has pairs of complementary 
parameters in the wavefunctions. This applies in particular to the Gaussian wavepackets 
that are frequently used in molecular physics problems. 

Since the dynamics generated by the variational principles differs from the exact 
quantal one, the associated time evolution of physical quantities is not expected to 
coincide either. In particular, conservation laws may be violated. A study effected 
using the Hamilton-like TDVP formalism reveals that under certain conditions a quantity 
may be both quantally and TDVP conserved. These conditions are formulated in the 
group theoretic framework for the construction of the parametrised wavepackets. 

The TDVP applied to a N-dimensional spherical Gaussian WP and a Hamiltonian 
composed of kinetic energy and a local potential was shown to lead to a set of classical 
Hamilton-like equations for the time evolution of the centre, translational momentum, 
width and dilational momentum. For a rotationally invariant potential, angular 
momentum operators are seen to be interesting candidates for a study of conservation 
laws in the TDVP. 

A numerical illustration for the spherical Gaussian well was worked out. The 
parameter trajectories were analysed and their quasi-periodicity characterised by dis- 
tinctive timescales. Our studies show that intrinsic conservation laws (energy and 
angular momentum components) are numerically fulfilled to a high degree of accuracy, 
but that in case of a TDVP breakdown of a quantal conservation law great care has to 
be taken in the interpretation of the results. 

Acknowledgments 

L Lathouwers would like to acknowledge support from the NFWO Belgium, the NATO 
Scientific Affairs Division (grant 84-716) and the NSF (grant CHE 8417571). 

Appendix 

In § 3 we consider a group theoretic operator method for the construction of the 
parametrised TDVP states, i.e. 

where the {A,} are a Lie algebra and ~ ( x I O )  is a suitably chosen reference state. This 
is actually Perelomov's method of defining generalised coherent states for an arbitrary 
Lie group G. For more information we refer to the literature [13]. 

The Gaussian wavepackets (GWP) of (31) in § 4 of the text can be constructed as 
above, using the operators (where R, p and are N-dimensional vectors, N being the 
number of coordinates in +(xyO)) 

{A,} = {Id, 2, P}B {{R * 2, 2 * p+ p - R, p * p}@ C} ('42) 
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and the reference state 

Three algebras are involved, namely the Heisenberg-Weyl algebra W ( N )  for N 
dimensions, the symplectic algebra sp(2, R) and the angular momentum algebra so(3). 
They give rise to a Lie group with the semi-direct product structure [14, 151: 

G = W ( N )  3 (Sp(2, R)OSO(3)). 

In the operator action (Al)  on (A3), the subgroup H of G generated by {Id, (R2+  
p2), c} may be discarded because it only produces a phase factor. H is the so-called 
stability group of the reference state q5(xIO) under the group action. Thus one needs 
to consider in equation (AI) group elements representing the cosets of G/H. With a 
little effort [14, 161 one shows that these elments can be written in product form: 

[exp(ipjxj) exp(-i%pj)] exp ( i -x x? ) exp [ -i In ( 2 $ ) 1 ’ 4 ~  - (xjPj+pjxj)] 
J .i 

(A41 

The effect on the reference state dJ(xI0) is then easily evaluated. One recognises the 
translation of the WP centre to position ( q j )  accompanied by a boost to linear momentum 
( p j )  and similarly a dilation to width w accompanied by a boost to scaling momentum 
U (cf above). This establishes the GWP as generalised coherent states for G/H and 
allows us to use the theory of 0 3 in the analysis of conservation laws in GWP-TDVP 

dynamics. 
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